Shopping cart is empty.

Finite Element Modeling

Veryst offers leading expertise in advanced finite element modeling. Although many firms offer finite element modeling, Veryst possesses an advanced level of knowledge for modeling complex, nonlinear problems across industries. Many of our staff come from leading nonlinear software firms such as SIMULIA and ADINA, and we have official partner relationships with numerous firms, including SIMULIA, ANSYS, and COMSOL. We can address problems that other finite element analysis consultants either cannot or are not sufficiently experienced to do well.  

Our strengths lie in:

Rapid Response:  We can translate designs from CAD to the completion of highly nonlinear analyses quickly.

Nonlinear Materials:  We are world leading in incorporating nonlinear, rate- and temperature-dependent behavior with damage, anisotropy, and history effects in finite element codes. We have modeled elastomers, foams, thermoplastics, and thermosets as well as other nonlinear materials. Veryst offers the PolyUMOD library of polymer constitutive models to increase the capabilities of commercial finite element codes in modeling complex material behavior.

Contact:  We have world leading expertise in contact mechanics. We can implement changes in contact and frictional constitutive behaviors to ensure simulation accuracy and reduce computational demands. We also solve contact problems involving adhesion, microscale contact problems involving surface tension, as well as multiphysics contact problems where the contact conditions influence the thermal, acoustic, electromagnetic, and/or fluid flow fields.

Dynamic Impact:  Dynamic simulations and impact analyses require familiarity with the complexities of explicit simulation. Veryst has performed numerous explicit impact simulations varying from consumer products to large structures, and can implement strategies for efficient and accurate explicit models.

Anisotropy:  Veryst has extensive experience with material anisotropy, ranging from induced anisotropy from manufacturing processes to composite materials. The PolyUMod library has explicit anisotropic models, and we have modeled textiles, fiber-reinforced elastomers, and composite materials.


Macro-scale modeling of hose and reinforcement layers

Validation:  Simulations require validation. Veryst has extensive experience through its laboratory facilities applying targeted experimentation for calibration and validation of finite element simulations. Our validation efforts also involve sensitivity and uncertainty analysis. We emphasize the need for validation throughout our simulation projects, particularly given their complexity and concomitant uncertainty.

Advanced Material Models for Finite Element Simulations

In many finite element simulations of polymer components the most challenging step is the specification of an appropriate material model that captures the experimentally observed nonlinear viscoelastic or viscoplastic response of the material. Veryst has developed a library of user-material models that accurately captures the response of elastomers, biomaterials, thermoplastics, and thermosets. These material models can be added to commercial finite element software as an external library and enable significantly more accurate simulations and predictions of real materials than what is possible with built-in material models.

The following figure shows an example of the accuracy of one of these user-material models. The figure compares the experimentally determined cyclic loading response of UHMWPE with predictions from the Three Network Model, which is specifically developed for this class of materials.


Call Us

To contact Veryst, please call: